
COP 3330: Introduction To UML Page 1 © Dr. Mark Llewellyn

COP 3330: Object-Oriented Programming

Summer 2011

Introduction to Object-Oriented Programming

and the Unified Modeling Language (UML)

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2011

COP 3330: Introduction To UML Page 2 © Dr. Mark Llewellyn

A Brief Introduction to UML
• It is not easy for software designers to keep in mind all of the

important properties of classes and the relationships that exist between
the classes as the number of classes and relationships grow in a system.

• To aid in visualizing the design, a diagram can be very helpful. The
standard notation, or language, that is used for these diagrams is called
the Unified Modeling Language, or UML for short.

• There are 13 different types of diagrams included in the UML 2.0
standard (the current standard adopted in 2003). Among the thirteen
are class diagrams, state diagrams, and sequence diagrams. These
three are the most useful types of diagrams for OO-program
developers. For right now, we focus only on class diagrams.

• UML is not a Java-only modeling language, so its notations do not
always correspond directly to Java notation or syntax. For example, a
method named practice that takes an integer x as a parameter and
returns a String is written in Java as: String practice (int x)

but in UML is written as: practice (x: int): String

COP 3330: Introduction To UML Page 3 © Dr. Mark Llewellyn

UML Class Diagrams
• A UML class diagram shows classes, interfaces and the relationships

between them.

• A class diagram provides a static view of the classes and relationships
rather than a dynamic view of the interactions among the objects of
those classes.

• A class is represented by a rectangle (box) divided into three sections
horizontally.

– The top section gives the name of the class.

– The middle section gives the attributes (fields) of the objects of the class.
These fields are abstractions of the data or state of an object and as such
are usually implemented as instance variables. However, class variables
are also represented here.

– The bottom section gives the operations (“intelligence”) of the class,
which corresponds to the constructors and methods in Java.

• The example on the next page shows the UML class diagram for
the Person class we created in the previous set of notes.

COP 3330: Introduction To UML Page 4 © Dr. Mark Llewellyn

UML Class Diagrams

public class Person {

private String name;

private Date birthDate;

public Person (String who, Date bday) {

this.name = who;

this.birthDate = bday;

}

public String getName() {

return name;

}

public Date getBirthDate() {

return birthDate;

}

}

Person

− name: String

− birthDate: Date

+ Person (name: String, birthDate: Date): Person

+ getName (): String

+ getBirthDate (): Date

UML Class Diagram

The equivalent Java code

COP 3330: Introduction To UML Page 5 © Dr. Mark Llewellyn

UML Class Diagrams

Person

− name: String

− birthDate: Date

+ Person (aname: String, aday: Date): Person

+ getName (): String

+ getBirthDate (): Date

UML Class Diagram

Accessibility

modifiers:

− indicates private

+ indicates public

indicates protected

~ indicates package

Class variables or

class methods are

indicated by

underlining the class

variable or class

method.

There are other optional parts to UML class diagrams, including a 4th

section that would be below the methods in which the responsibilities

of the class are outlined. You don’t see this too often, but it is

available and is useful when transitioning from CRC cards (class,

responsibilities, collaborators) which is a modeling tool used to

decide what crc’s are needed (more later).

COP 3330: Introduction To UML Page 6 © Dr. Mark Llewellyn

UML Class Diagrams
• Class diagrams are also used to show relationships between classes.

• A class that is a subclass of another class is connected to that class by
an arrow with a solid line for its shaft and with a triangular hollow
arrowhead. The arrow points from the subclass to the superclass. In
UML, such a relationship is called a generalization.

• A similar arrow except using a dashed line for the arrow shaft is used
to indicate implementation of an interface. In UML, such a
relationship is called a realization.

• An association between two classes means that there is a structural
relationship between them. Associations are represented by solid lines.
Associations have many optional parts. Both the association and each
of its ends can be labeled. Arrows on either or both ends of an
association indicate navigability. Also, each end of an association line
can have a multiplicity value displayed. An association might also
connect a class with itself, using a loop. Such an association indicates
that the connection of an object of the class with other objects of the
same class.

COP 3330: Introduction To UML Page 7 © Dr. Mark Llewellyn

UML Class Diagrams
• An association with an arrow on one end indicates one-way

navigability. The arrow means that from one class you can easily
access the second associated class to which the association points, but
from the second class, you cannot necessarily easily access the first
class.

– Another way to think about this is that the first class is aware of the
second class, but the second class is not necessarily directly aware of the
first class.

• An association with no arrows usually indicates a two-way association,
but it may also means that navigability is not important and was simply
left off the diagram.

• The multiplicity of one end of an association means the number of
objects of that class associated with the other class. A multiplicity is
specified by a nonnegative integer or a range of integers. A
multiplicity specified by “0..1” means that there are 0 or 1 objects on
that end of the association. Other common multiplicities are “0..*”(0
or more), “1..*” (1 or more), and “*” (shorthand for 0 or more).

COP 3330: Introduction To UML Page 8 © Dr. Mark Llewellyn

UML Class Diagrams

superclass

subclass

A generalization

<<interface >>

class

A realization

Class A Class B
1..4 *

An association with two-way navigability with members of class B related

to between 1 and 4 members of class A and a member of class A being

related to 0 or more members of class B.

COP 3330: Introduction To UML Page 9 © Dr. Mark Llewellyn

UML Class Diagrams
• Another connection besides an association between classes that can be

displayed in a class diagram is the dependency relationship. A
dependency is indicated by a dashed line (with optional arrows and
optional labels).

• One class depends on another if changes to the second class might
require changes to the first class.

– Note: An association from one class to another automatically indicates a
dependency, and so no dashed line is needed between classes if there is
already an association between them. However, for a transient relationship,
i.e., for a class that does not maintain any long-term connection to another
class but does use that class occasionally, you should draw the dependency
from the first class to the second class. In the example that follows, the Dog
class uses the Date class whenever its getCurrentAge method is invoked, and
so the dependency is labeled “uses”.

• Abstract classes or abstract methods are indicated by using italics for
the name.

• An interface is indicated by adding the phrase <<interface>> (called a
stereotype) above the name.

COP 3330: Introduction To UML Page 10 © Dr. Mark Llewellyn

UML Class Diagrams

Person

− name: String

− birthDate: Date

+ Person (aname: String, aday: Date): Person

+ getName (): String

+ getBirthDate (): Date

<< interface >>

OwnedObject

+ getOwner (): Person

* owner

Pet

− name: String

− favoriteFood: String

+ getName(): String

+ getFavoriteFood(): String

Dog

− breed: String

+ getBreed(): String

+getCurrentAge(yr: Date): int

Cat

− hairColor: String

+ getHairColor(): String

Date
uses

COP 3330: Introduction To UML Page 11 © Dr. Mark Llewellyn

UML Class Diagrams
• An aggregation is a special kind of association indicated by a

hollow diamond on one end of the association link. It indicates a
“whole/part” relationship, in that the class to which the arrow points
is considered “part” of the class at the diamond end of the
association.

• A composition is an aggregation indicating strong ownership of the
parts. A composition is indicated by a solid diamond on the
“owner” end of the association. In a composition, the parts live and
die with the owner because they have no role in the software system
independent of the owner.

• Another fairly common element of a class diagram is a note, which
is represented by a box with a dog-eared corner that is connected to
other elements with a dashed line. It can have arbitrary content
(text and graphics) and is similar to a comment in a programming
language. It might contain comments about the role of a class or
constraints that all objects of the class must satisfy. If the contents
are a constraint, the contents are surrounded by braces.

COP 3330: Introduction To UML Page 12 © Dr. Mark Llewellyn

UML Class Diagrams

College Course
*

Building

*
{ must take place in a building }

An aggregation – college consists

of buildings that make up the

campus. If the college were to

close the buildings would still exist

to be used for some other purpose.

A composition – a course does not exist

outside of the college at which it is offered.

A note that is describing a

constraint to be applied to

each course object.

COP 3330: Introduction To UML Page 13 © Dr. Mark Llewellyn

Implementation Inheritance

• One of the most significant features of OO

programming is implementation inheritance or

subclassing.

• Inheritance greatly increases the reusability of

classes and also minimizes the duplication of

code.

• This is just an introduction to inheritance, we’ll

examine it in much greater detail later.

COP 3330: Introduction To UML Page 14 © Dr. Mark Llewellyn

Implementation Inheritance

superclass

subclass

UML notation for

subclass and

superclass

• A subclass inherits all of the
features of its superclass.

• This means all of the variables
and methods, but not the
constructors.
– The constructor in the superclass

must be invoked to create a
superclass object before the
constructor for the subclass can
specialize the subclass object.

– If you think about what inheritance
means for a minute, this will make
sense – the superclass object must
exist before it can be turned into a
specialized subclass object.

COP 3330: Introduction To UML Page 15 © Dr. Mark Llewellyn

Specialization
• Let’s consider the following example of a software developer (you!)

who has been assigned to create a drawing program in which
rectangles can grow, shrink, or move around on a panel under the
control of the user.

• In order to deal with the rectangles, it is useful to have a Rectangle
class that stores the relevant information about the rectangle such as its
size and position.

• Since our developer is smart, they do not immediately code a
Rectangle class from scratch, but instead spend a few minutes looking
through existing libraries to see if there is already a Rectangle class
that can be used.

• Sure enough, there are several Rectangle classes in the Java libraries,
including:

java.awt.Rectangle,

java.awt.geom.Rectangle2D.Double,

and java.awt.geom.Rectangle2D.Float.

COP 3330: Introduction To UML Page 16 © Dr. Mark Llewellyn

Specialization

• After studying these classes, you determine that

java.awt.Rectangle is the closest one to

satisfying your needs.

• However, you want a class with a getCenter()

method and a setCenter(int x, int y)

method and the Rectangle class does not include

such methods.

• What should you do to get what you want with

minimal effort?

COP 3330: Introduction To UML Page 17 © Dr. Mark Llewellyn

Specialization

• Option #1: If the source code for the
existing Rectangle class is available, you
could modify the class to suit your needs,
including adding the new methods and
possibly deleting any methods that you don’t
need.

• Option #2: You could copy the Rectangle
class code and insert it into a new class
named EnhancedRectangle and then
add the new code.

COP 3330: Introduction To UML Page 18 © Dr. Mark Llewellyn

Specialization
• Code reuse is always a very appropriate action to take – however,

neither of these techniques are the correct way to reuse code! They
both have inelegant aspects (remember we are writing to write only
elegant, high-quality code here).

• Problems with option #1: This approach could cause problems with
existing code that uses the original Rectangle class – there are now two
versions of Rectangle floating around to confuse users and possibly the
compiler as well.

• Problems with option #2: This approach is better than the first in that
the new class will not affect existing code that uses the original
Rectangle class, but there is major code duplication in this case. The
code duplication introduces unnecessary complexity (remember that
one of the properties of elegance is simplicity). For example, if the
original code is found to have bugs, the programmer is going to have to
remember to fix the bugs in the copied code.

• Furthermore, neither of these approaches will work if only the
compiled code and not the source code for the Rectangle class is
available. So now what?

COP 3330: Introduction To UML Page 19 © Dr. Mark Llewellyn

Specialization
• One solution would be to be to simply ignore the compiled code and

define and implement a new EnhancedRectangle class.

• However, this approach does nothing in terms of code reuse and also
results in significant code duplication. While we don’t necessarily
have exact duplication of the method bodies, we do have duplication of
semantics, which can be just as bad.

– Also, since we would assume that the original Rectangle class was
thoroughly tested and we now may face a considerable effort to construct
a new class to bring it up to the error-free level of the existing class for the
original functionality.

• So what is the solution to our problem?

• Answer: Use implementation inheritance (available in any OO
language), that will allow you to define a new class as a subclass
of another class. In this case we want to create a new class
named EnhancedRectangle that will be a subclass of the existing
class Rectangle (the superclass). A subclass inherits all the
features (variables and methods) of its superclass.

COP 3330: Introduction To UML Page 20 © Dr. Mark Llewellyn

Specialization

Rectangle

+ getCenterX(): int

+ getCenterY(): int

+ getWidth(): int

+ getHeight(): int

+ setLocation(x: int, y: int): void

EnhancedRectangle

+ getCenter(): Point

+ setCenter(x: int, y: int): void

UML diagram for this scenario

All of the instance

variables and methods

of the Rectangle class

that are not relevant to

this scenario are

simply omitted from

the UML diagram.

COP 3330: Introduction To UML Page 21 © Dr. Mark Llewellyn

Specialization

Java implementation for this scenario

public class EnhancedRectangle extends Rectangle

{

//constructor

public EnhancedRectangle (int x, int y, int w, int h)

{

super(x, y, w, h); //invoke constructor in superclass

}

public Point getCenter()

{

return new Point((int) getCenterX(), (int) getCenterY());

}

public void setCenter(int x, int y)

{

setLocation(x–(int) getWidth()/2, y-(int) getHeight()/2;

}

}

Subclassing in Java is

expressed using the

keyword “extends”

COP 3330: Introduction To UML Page 22 © Dr. Mark Llewellyn

Specialization
• In the Java code on the previous page, the first line declaration

makes the class EnhancedRectangle a subclass of Rectangle and
makes Rectangle a superclass of EnhancedRectangle.

• Because it is a subclass, the new EnhancedRectangle class
inherits all of the methods and all of the data in the Rectangle
class.

• Note that since constructors are not inherited, you must create a
constructor for the new subclass.

– If you do not specify a constructor in a class, Java will automatically
create a no argument default constructor that will allow generic objects of
the class to be created. In general, you should specify the constructor.

• The call to super(x,y,w,h) in the constructor method of the
EnhancedRectangle class invokes the superclass constructor to
initialize all the Rectangle data. (Remember we cannot
specialize a subclass instance unless we have first created an
instance of the superclass.)

COP 3330: Introduction To UML Page 23 © Dr. Mark Llewellyn

Specialization
• Notice that the getCenterX, getCenterY,

setLocation, getWidth, and getHeight methods that

are used in the Java code to implement the two new methods

getCenter and setCenter methods are all inherited from

the Rectangle class.

• Now the clients of the EnhancedRectangle class can use it as

follows:

EnhancedRectangle rectangle = new EnhancedRectangle(1,2,50,60);

rectangle.setLocation(10,10); //inherited method

rectangle.setCenter(60,80); //subclass method

• Note that EnhancedRectangle objects behave as if all methods

inherited from the Rectangle class have been defined in their

class.

COP 3330: Introduction To UML Page 24 © Dr. Mark Llewellyn

Specialization

• In this way, subclassing provides a way to reuse the

code and data of an existing class to create a new class

that is identical except that it has more features (data

and/or behavior). This process of extending an existing

class by adding new features is called using inheritance

for specialization.

COP 3330: Introduction To UML Page 25 © Dr. Mark Llewellyn

Special Notes on Inheritance in Java

• All Java classes that do not explicitly extend another
class implicitly extend the Object class.

• Therefore, all Java classes extend the Object class either
directly or indirectly via one or more intermediate
classes in an inheritance chain.

• This means that any Java class will automatically
inherit the methods in the Object class: clone,

equals, finalize, getClass, hashcode,

notify, notifyAll, toString, and three
versions of wait.

COP 3330: Introduction To UML Page 26 © Dr. Mark Llewellyn

Special Notes on Inheritance in Java

• A Java class can have only one superclass. This is

called single inheritance. It means that you can’t inherit

some methods from one class and some other methods

from a different class using subclassing.

• Single inheritance can interfere with your attempts at

code reuse. This is a shortcoming of Java, but it serves

the purpose of keeping the implementation of classes

and inheritance simple and also simplifies the

understanding of such code.

COP 3330: Introduction To UML Page 27 © Dr. Mark Llewellyn

Special Notes on Inheritance in Java

Superclass A

+ getX(): int

+ getY(): int

Superclass B

+ getY(): int

+ getZ(): int

Subclass C

Multiple Inheritance (not allowed in Java)

The developer of class C would like to be able to have a getX, getY, and getZ method

available to objects in class C. This is not allowed in Java. Another problem with multiple

inheritance is illustrated by the method getY. If method getY is invoked in class C, which

version of getY would be used?

COP 3330: Introduction To UML Page 28 © Dr. Mark Llewellyn

Types, Subtypes, and Interface Inheritance

• Another of the most powerful concepts of OO programming is
subtype polymorphism. In order to understand this concept, it is
important to fully understand what is meant by a “type”.

• A type can be thought of as a set of data values and the
operations that can be performed on them. For example, the int
primitive type in Java can be thought of as the set of all 32-bit
integers (values ranging from -2,147,483,648 to +2,147,483,647)
together with the set of operations that can be performed on
integers, including, for example, addition, subtraction,
multiplication, and division.

• For objects, types can be defined similarly, except the focus is
more on the operations than on the values. For our purposes, an
object type will consist of a set of operations and a set of objects
that can perform those operations.

•

COP 3330: Introduction To UML Page 29 © Dr. Mark Llewellyn

Types, Subtypes, and Interface Inheritance

• There are two standard ways in Java to define new

types.

1. Any class C implicitly forms a type C. The set of

public methods of the class form the set of operations

for type C and the objects of class C or its subclasses

form the set of objects of that type.

• For example, the class Person that we built on page 4,

defines a type “Person” with operations getName() and

getBirthDate(). All objects of class Person or its subclasses

can perform these two operations, and these objects form

the set of objects of type Person.

COP 3330: Introduction To UML Page 30 © Dr. Mark Llewellyn

Types, Subtypes, and Interface Inheritance

2. The other way to define a type is to use Java

interfaces. An interface can be thought of as a

named set of operations. All objects whose

classes explicitly “implement” the interface

form the set of objects of that type.

• For example, the following interface defines a type

Runnable.

public interface Runnable

{

public void run();

}

COP 3330: Introduction To UML Page 31 © Dr. Mark Llewellyn

Types, Subtypes, and Interface Inheritance

• The operations of type Runnable consist of just the

run() method. The set of objects of type Runnable

consists of all classes that implement Runnable.

For example, consider the following class

SimpleRunner.

public class SimpleRunner implements Runnable

{

public void run()

{

System.out.println(“I’m running.”);

}

}

COP 3330: Introduction To UML Page 32 © Dr. Mark Llewellyn

Types, Subtypes, and Interface Inheritance

• The class SimpleRunner defines and implements a

method run() of the form required by the Runnable

interface and the class explicitly declares that it

“implements Runnable”.

• Therefore, all object of class SimpleRunner can be

considered as objects of type Runnable. In fact,

since SimpleRunner is also a subclass of the Object

class, objects of class SimpleRunner have three

types: SimpleRunner, Runnable, and Object.

COP 3330: Introduction To UML Page 33 © Dr. Mark Llewellyn

Types, Subtypes, and Interface Inheritance

<< interface >>

Runnable

+ run(): void

Object

SimpleRunner

+ run(): void

UML diagram showing the Runnable interface and the

SimpleRunner class

COP 3330: Introduction To UML Page 34 © Dr. Mark Llewellyn

Types, Subtypes, and Interface Inheritance

• Objects of a subclass S of a class T are considered to be both
of type S and of type T.

• There is a special relationship between the type of a subclass
and the type of a superclass, in that the a subclass of a class
defines a subtype of the superclass type.

• In other words, one type S is a subtype of another type T
(which, in turn, is called a supertype of S) if the set of objects
of type S are a subset of the set of objects of type T and the set
of operations of S are a superset of the operations of T.

– Note that, if type S is a subtype of T, then set of operations of S must
include all the operations of T and can possibly include more. For
example, the type SimpleRunner is a subtype of Runnable since all
objects of type SimpleRunner are also objects of type Runnable since
SimpleRunner includes all operations in the Runnable type. Similarly,
SimpleRunner is a subtype of Object since it includes (inherits) all
operations in Object and its objects are a subset of the set of all Objects.

COP 3330: Introduction To UML Page 35 © Dr. Mark Llewellyn

Types, Subtypes, and Interface Inheritance

• It should also be noted that interfaces can also have
subinterfaces that inherit from them similar to the way
inheritance works with classes.

• For example, consider the following interface:

public interface Movable extends Runnable

{
public void walk();

}

• The movable interface defines a new interface with
two operations: its walk() operation and the run()
operation that it inherits from Runnable.

• As you might expect, a subinterface defines a subtype
of the type defined by the superinterface.

COP 3330: Introduction To UML Page 36 © Dr. Mark Llewellyn

Polymorphism

• Object oriented programming languages support these
notions of types and subtypes that we’ve just seen by
allowing a variable of one type to store and object of
a subtype.

• For example, in the Java statement:

Runnable r = new SimpleRunner;

the variable r of type Runnable refers to an object of
the actual class SimpleRunner.

• The fact that an object of a subtype can be legally
used wherever an object of a supertype is expected is
called subtype polymorphism.

COP 3330: Introduction To UML Page 37 © Dr. Mark Llewellyn

• Extend the UML class diagram on page 10 in the
following manner:

1. Include another abstract class named Toys that implements
the interface OwnedObject. The abstract class Toys
should have two subclasses, one named Bikes, the other
named Karts. Each of these subclasses has a single
private attribute named type which is a String. Each
subclass has a single accessor method (a “getter” method)
which simply returns the current value of the type of each
object.

2. Add another private attribute to the Cat class which is a
String type that gives the cat’s name. Also provide an
accessor method to allow any object to get a cat’s name.

UML – Practice Problem 1

COP 3330: Introduction To UML Page 38 © Dr. Mark Llewellyn

• Draw a UML class diagram for a university scenario
where students take classes taught by instructors.

– Students take courses.

– Instructors teach courses.

– Students are divided into two subclasses: undergraduate and graduate.

– Graduate students are divided into two subclasses: master’s students
and doctoral students.

– Provide an accessor method for every attribute in each class that you
develop. All accessor methods should be public and all attributes
should be private.

– Assume that a student can take 0 or more courses. A course can be
taken by 0 or more students.

– Assume that an instructor can teach between 0 and 4 courses. A course
is taught by only 1 instructor.

UML – Practice Problem 2

